Home | About CytoJournalEditorial Board | Archived articles | Search CytoJ Articles | Subscribe | Peer review policies | CytoJournal Quiz Cases
  Reviewer corner | Author corner | OA Steward’s corner | CF member’s corner | Join as CF member | Manuscript submission | Open Access (OA) Advocacy
Home
CytoJournal All 'FULL TEXT' in HTML are FREE under "open access" charter of CytoJournal.
To login for downloading any PDF OR to request TOC (Table of Content) by e-mail, please click here
Home Email this page Print this page Small font size Default font size Increase font size Cytopathology Foundation
Navigate here
  Search
 
 » Next article
 » Previous article 
 » Browse articles
  
Resource links
 »  Similar in PUBMED
 »  Search Pubmed for
 »  Search in Google Scholar for
 »  Article in PDF (951 KB)
 »  Citation Manager
 »  Access Statistics
 »  Reader Comments
 »  Email Alert *
 »  Add to My List *
* Registration required (free)  

 
  In this article
 »  Abstract
 »  Background
 »  Materials and me...
 »  Results
 »  Discussion
 »  Conclusion
 »  Competing interests
 »  Authors' contrib...
 »  References
 »  Article Figures
 »  Article Tables

 Article Access Statistics
    Viewed8956    
    Printed88    
    Emailed0    
    PDF Downloaded351    
    Comments [Add]    
    Cited by others 8    

Recommend this journal

 


 
RESEARCH
CytoJournal 2007,  4:9

Should fine needle aspiration biopsy be the first pathological investigation in the diagnosis of a bone lesion? An algorithmic approach with review of literature


Department of Pathology, Moti Lal Nehru Medical College, University of Allahabad, Allahabad, India

Date of Submission16-Nov-2005
Date of Acceptance17-Apr-2007
Date of Web Publication17-Apr-2007

Correspondence Address:
Ravi Mehrotra
Department of Pathology, Moti Lal Nehru Medical College, University of Allahabad, Allahabad
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.1186/1742-6413-4-9

Rights and Permissions

 » Abstract 

Background: Fine needle aspiration biopsy (FNAB) is gaining increasing popularity in the diagnosis of musculoskeletal lesions; and in many patients, a definitive diagnosis can be rendered from aspiration smears alone. Its applicability in bone pathology, however, has been controversial due to a high percentage of inadequate smears, difficulty in evaluation of tissue architecture and nonspecific results in the diagnosis of primary bone lesions. In this study, the value of aspiration as the first pathological investigation in the diagnosis of a bone lesion was evaluated.
Methods: 91 cases of clinically suspected cases of bone lesions were aspirated over a period of two years. Direct or cytospin smears were fixed in 95% alcohol and stained by Hematoxylin and Eosin or air-dried and later fixed in methanol for May Grŭnwald Giemsa staining.
Results: Of the 91 patients who were subjected to FNAB, 81 were considered satisfactory and 10.9 % (10) were inadequate\inconclusive for diagnosis. Cyto-histological concordance was obtained in 78.5 % (51/65) patients. Positive and negative predictive values were 87.5% and 97.2 % respectively. Sensitivity as a preliminary diagnostic technique was 93.3%, whereas specificity was 94.5 %. Overall, diagnostic accuracy was 94.2 %. Metastatic lesions were detected with 100% accuracy. Two cases were reported as false positive and one case as false negative.
Conclusion: Cytology provides valuable information to the clinician to make an informed decision regarding appropriate therapy. We conclude that time-consuming and costly investigations may be reduced by choosing FNAB as the initial pathological diagnostic method for skeletal lesions of unknown origin. The choice of radiological examinations, laboratory tests and surgical biopsies can be determined after the FNAB diagnosis.



How to cite this article:
Mehrotra R, Singh M, Singh PA, Mannan R, Ojha VK, Singh P. Should fine needle aspiration biopsy be the first pathological investigation in the diagnosis of a bone lesion? An algorithmic approach with review of literature. CytoJournal 2007;4:9

How to cite this URL:
Mehrotra R, Singh M, Singh PA, Mannan R, Ojha VK, Singh P. Should fine needle aspiration biopsy be the first pathological investigation in the diagnosis of a bone lesion? An algorithmic approach with review of literature. CytoJournal [serial online] 2007 [cited 2017 Jul 23];4:9. Available from: http://www.cytojournal.com/text.asp?2007/4/1/9/41216



 » Background Top


Fine needle aspiration biopsy (FNAB) has established its role in the preliminary diagnosis and planning of therapy for lesions in organs like thyroid, breast, lymph nodes and even the skull [1]. It, however, plays a limited role in detection of bone lesions. This may be attributed to lack of experience of the cytological appearance of bone lesions, which in turn, is due to difficulty associated with aspiration [2].

For long, widespread usage of FNAB as a diagnostic tool has been impeded because of the requirement of considerable training and experience of the cytopathologist as well as limited clinical information, false negative and false positive diagnoses and the overlap of cytological features in benign and malignant lesions. Often diagnosis of benign lesions cannot be made with certainty. Precise classification of a tumor is difficult on the basis of FNAB alone and histopathological confirmation is frequently required. However, on the other hand, FNAB of bone lesions has its own advantages of being simple, safe, and inexpensive and a quick outpatient procedure. It can also be repeated at different sites in case of inadequate material being aspirated [3].

This study was undertaken to assess the accuracy of FNAB and histopathological correlation in the diagnosis of bone lesions. Special emphasis was given to understanding its limitations and diagnostic aberrations. Analysis of the discordant cases was done to determine the source of diagnostic errors. A review of literature was done to compare the results with those of previous workers.


 » Materials and methods Top


This study was conducted by the department of Pathology in conjunction with the department of Orthopedics, Moti Lal Nehru Medical College, Allahabad, India at the tertiary referral center: the Swaroop Rani Nehru Hospital. 91 cases were referred for FNAB in clinically suspected bone lesions.

A detailed clinical workup, including radiological assessment (X-ray and/or CT scan), was done prior to FNAB. The site of aspiration was approached through the shortest distance with radiological guidance. Aspirates were obtained using disposable needles (22-24 G) attached to a disposable 10 ml plastic syringe. A Cameco-type syringe holder was used where necessary. Under aseptic conditions, the needle was introduced into the lesion and after maintaining a negative suction pressure, multiple quick oscillations in different directions were made till some material was seen in the hub of the needle. Then the needle was withdrawn after releasing the negative pressure gently. One to two more passes were made into the lesion from different sites to ensure adequate sampling.

The physical nature of the aspirate was noted as fluid, pus, blood, caseous material and tissue bits etc. to be processed accordingly. Contents of the needle were blown on clean glass slides and the smears were made immediately. A few smears were quickly fixed in 95% ethanol for Hematoxylin and Eosin staining while the remaining smears were air dried and fixed in methanol for May Grŭnwald Giemsa staining. If sufficient material was left after preparing the smears, cell blocks were also prepared. In addition to the above mentioned routine stains; cytochemical stains like reticulin (Gomori's), alkaline phosphatase, Periodic acid Schiff (PAS) with without diastase, mucicarmine and immunohistochemical (IHC) stains were employed to support the diagnosis wherever necessary.

Cytodiagnostic light microscopy was embarked upon; all the smears were meticulously interpreted by two experienced cytopathologists. Accordingly, the smears were categorized as "benign", "malignant", "suspicious" and "inadequate\inconclusive". There was no perfect or absolute morphological feature of cancer, which when present unequivocally, meant that the cell is cancerous or when absent means that there was no cancer: however certain features, when taken in their totality and keeping in view the clinico-radiological findings enabled the cytopathologist to divide the cytologic findings into benign, suspicious and malignant. The smears were categorized as "suspicious" when the specimen was hypocellular and a few neoplastic cells were present or the cytological features of malignancy could not be ruled out conclusively and "inadequate\inconclusive" category was assigned when the specimens were extremely paucicellular or blood mixed to an extent that all other elements were obscured. The criteria used for labeling the aspirates as benign and malignant are depicted in [Table 1]. Wherever possible, an attempt was made to render an exact cytological diagnosis.

For histopathological examination, tissues were embedded in paraffin blocks, sliced into 2-3 micron sections and stained with routine Hematoxylin and Eosin staining and examined in a double blind fashion by two pathologists. In case of discrepancy, the opinion of a third pathologist was taken and two concordant diagnoses were treated as final.

The findings of FNAB were correlated with the histopathological diagnosis. Taking histopathology as the "gold standard" the diagnostic indices were calculated in terms of true and false positive, true and false negative, sensitivity, specificity, predictive values and accuracy test to support our study design. Calculation of these values was based on cases interpreted as diagnostic on histology, excluding both the inadequate\inconclusive smears as well as suspicious category.

A step-wise approach to FNAB diagnosis of bony lesions is given as follows:

Step 1: Establish category of clinical presentation

A patient may present with a bony mass/es under the following clinical scenarios: (i) Routine medical check-up, (ii) Bony pain, swelling or discharging sinus (iii) Known malignant cases. Important relevant data include age of the patient and site of involvement. Radiologic correlation is mandatory.

Step 2: Establish category of radiologic findings

In many instances, a preoperative diagnosis can be achieved with a high degree of accuracy based on non-invasive imaging techniques and close clinical correlation. FNAB is useful in defining those lesions without characteristic imaging appearance. Lists of entities along with the cytologic and radiological findings are given as a working guide. [see Additional file 1]

Step 3: Establish nature of cytohistologic findings.

Usual cytological findings are summarized in the "additional table".

Step 4: Further confirm nature of cytohistologic findings

The initial cytologic assessment is crucial as it forms the basis upon which ancillary tests are ordered; the results of which should be interpreted in the larger context of the case. Special stains and IHC may be helpful. A whole battery of antibodies is available for the comparative immunohistochemical study of primary and metastatic bone tumors, specially utilizing cell block preparations. The two major diagnostic issues are (i) whether the cells are malignant or benign? (ii) what is the histogenesis of the malignant cells? For example osteosarcoma exhibit strong positivity for Vimentin, variable for Actin/Desmin and S-100, if chondroid differentiation is present.

Step 5: Establish final diagnosis based on multidisciplinary approach

Close clinicopathological correlation is mandatory for enhancing the yield of FNAB diagnoses and the reduction of indeterminate reports.

A diagnostic algorithm for FNAB diagnosis of long bone lesions is given in [Figure1], spine in [Figure 2] and skull in [Figure 3].


 » Results Top


FNAB categories of 91 cases are summarized in [Table 2]. Of 91 cases, 81 (89%) were considered satisfactory and 10 (10.9%) were considered inadequate\inconclusive for diagnosis. The correlation of the diagnosis from FNAB and Histopathological examination (HPE) in 65 cases is shown in [Table 3]. Subsequent HPE was available for 65 (71.4%) of 91 cases, including 36 cases (76.6%) of 47 that were labeled cytologically benign, 3 (75%) of 4 that were labeled suspicious on cytology, 16 (53.3%) of 30 that were malignant on FNAB and all 10 cases in the inadequate\insufficient category. In the cytologically suspicious category, on histopathology, 2 cases (66.7%) out of 3 were found to be malignant. The sensitivity of FNAB was 93.3%, specificity 94.5%, positive predictive value 87.5% and negative predictive value 97.2%. The diagnostic accuracy was 94.23%. Of the 36 cases reported as benign on cytology, 1 proved to be malignant on histology, giving a false negative diagnosis. Of the 16 cases reported as malignant on cytology, 2 were later diagnosed as benign on histology, resulting in a false positive diagnosis.

[Table 4] shows cases correctly diagnosed on cytology. The cytodiagnosis included two cases of chondromyxoid fibroma [Figure 4], haemangiopericytoma [Figure 5], tuberculosis [Figure 6], metastatic carcinoma [Figure 7], Ewing's tumor [Figure 8] and myeloma [Figure 9].

In 48 benign lesions, discordant diagnoses were made in 3 cases. They included 2 cases of chronic granulomatous bone disease which, on FNAB, appeared to be metastatic adenocarcinoma, the discrepancy was due to macrophages on cytology being misinterpreted for mucin rich cells. In retrospect, PAS staining was found to be negative in these cases and a diagnosis of metastatic adenocarcinoma was refuted. In addition, a case of giant cell reparative granuloma was wrongly diagnosed as giant cell tumor on cytology [Figure 10].

Of the 17 malignant lesions, 14 were diagnosed as malignant, 2 as "suspicious" and 1 as benign on cytology. All the inadequate/inconclusive smears were found to be benign on histology. The single discordant diagnosis was seen in a case where a diagnosis of osteochondroma on cytology was found to be an osteosarcoma on histopathology.[Figure 11].


 » Discussion Top


Martin and Ellis first applied this technique to the diagnosis of bone lesions in 1930 [4]. Agarwal et al [5] and Layfield et al [6] have done pioneering work in describing the diagnostic accuracy and clinical utility of fine needle aspiration cytology in the diagnosis of clinically suspected primary bone tumors. As presurgical chemotherapy has become the standard treatment for osteosarcoma, FNAB has gained importance in recent years as an appealing diagnostic method [7].

Several published series have yielded overall accuracy values ranging from 51% to 100% [Table 5] [3-33]. This study differs from previous ones since it explores he utility of FNAB as the first pathological investigation in the diagnostic armamentarium of bony lesions. Of the 91 patients, histological confirmation was available for 65 patients. The sensitivity of FNAB was found to be 93.3%, specificity 94.5%, positive predictive value 87.5% and negative predictive value 97.2%. Diagnostic accuracy, on the other hand, was 94.23%. Similarly, Agarwal et al [5] reported the FNAB findings in 226 cases of bone tumors. A specific morphologic diagnosis on FNAB was possible in 159 cases with one false positive and 29 false negative reports. Giant cell tumor (32%) and Ewing's sarcoma (22%) were the most common bone tumors encountered. In their series, the overall sensitivity and specificity was 86% and 94.7% respectively. The positive predictive value was as high as 99.4% while the negative predictive value was 38.3%. They reported that the diagnosis of malignant tumors was more accurate with positive predictive value of 99.2% [5]. In our series, the only false negative case was that of osteosarcoma which was misinterpreted as osteochondroma. On review, it was found that paucicellular material on aspiration, erroneous cytological interpretation of cartilaginous components and bony trabeculae, along with lack of clinico-radiological correlation was the reason for error and such a smear should have been ideally kept under "inadequate\insufficient" category.

We encountered 2 false positive cases. One case of chronic granulomatous bone lesion was erroneously diagnosed as metastatic adenocarcinoma with unknown primary. On review, this case showed a few large bizarre cells filled with mucin, which was subsequently found to be macrophages. Detailed clinical history, examination and radiological findings were not available at the time of FNAB. It was found that, when in doubt, adjunct stains like cytochemical and immunocytochemical markers helped in reaching a diagnosis. The other case was that of a giant cell tumor, from an elderly male with a lytic lesion of the distal humerus, which was misdiagnosed as a sarcoma (not otherwise specified). Radiological information was again not available at the time of the diagnosis. The cause of false positive diagnosis was an interpretive error where benign cells were misinterpreted as malignant. This further underlined the importance of clinico-radiological correlation in cytology. In our series, only one metastatic malignancy was found and it was correctly diagnosed. An appropriate diagnosis of a metastatic lesion by FNAB has been reported to facilitate either non-operative management as well as contemporary surgical reconstructive techniques [30].

We also analyzed the diagnostic limitations of the technique and specimen adequacy in our study group: "inadequate\inconclusive" smears were 10.9%. Most of these cases were osteosclerotic and fibro-osseous lesions due to frequent dry taps and inconclusive smears. FNAB has a limited role in diagnosing these lesions. However, an experienced aspirator (preferably the cytopathologist, as in our series), correct aspiration technique and proper radiological evaluation to locate the most appropriate site for adequate sampling may minimize chances of inadequate material being aspirated. This failure rate was consistent with rates of 1.4 - 33% reported by previous investigators [30-32].

The separation of low-grade chondrosarcoma from enchondroma (chondroma) is an important issue but since there were only 2 cases in this series, this issue could not be addressed. Layfield et al have divided chondrosarcoma into three grades depending on the proportion of chondroid and myxoid substance as well as the degree of anaplasia [6]. Similarly, Rinas et al, in a recent report, have elucidated the difficulties in sampling errors and diagnosis of dedifferentiated chondrosarcoma [33].

In recent years, cytogenetics has been helping investigators to understand the genesis of the various bone lesions. This field is still in its infancy but cytopathologists, the world over, now recognize the fact that presence of certain chromosomal aberrations worsens the overall prognosis and survival post- therapeutic intervention in few bone tumors. For example, gain of chromosome 8q23 and CDK4 alone or together with MDM2 is associated with poor prognosis in osteosarcoma [34]. Similarly rearrangement in band 8q21 is detected exclusively in aggressive chondroblastoma [35]. More and more such associations are being discovered daily in research labs world over. However, cytogenetics was not applied in the cases under the present study but their importance, as an additional investigative tool in future cannot be understated and a future study is planned to explore its relevance.

The risks of open biopsy include infection, bleeding (especially in metastases from renal carcinoma), weakening of the bone possibly leading to pathological fractures, contamination of surrounding soft tissues as well as trauma and anxiety associated with surgery. These disadvantages can be avoided if FNAB is performed as an initial investigation. Ruhs et al found FNAB to be more cost-effective than open biopsy [36]. Similarly, Bommer et al, in their elegant study, have demonstrated that initiating the investigations of bony lesion with FNAB results in considerable savings. The cost of an open biopsy in the USA has been estimated to be $US5300 as compared with $US1600 for FNAB, if both are carried out as outpatient procedures. In this day of increasing health care costs, this more than three fold cost difference itself can be an important consideration [37].


 » Conclusion Top


FNAB is a simple and economical technique that can be performed as an outpatient procedure, reducing patient hospitalization and lowering the overall cost of patient care. Complications are few and multiple specimens can be obtained without increased morbidity. Treatment with radiation and/or chemotherapy can be initiated without any delay. In current orthopedic oncology practice, surgeons need to know the type of malignancy present. Operative approaches as well as the use of preoperative chemotherapy and radiation therapy depend on the type of malignancy diagnosed.

When sampling is adequate and radiological findings are available, FNAB of bone is a highly accurate diagnostic technique. Inflammatory conditions, benign non-fibrotic bone lesions as well as primary and metastatic malignant tumors can be correctly diagnosed. If bony lesions appears to be fibrotic and difficult to needle with the FNAB technique, a core or open biopsy may be performed. A definitive pathologic interpretation should never be rendered if diagnostic material is inadequate or radiologic information is not compatible. Therefore, radiologists, cytopathologists, and orthopedic surgeons must work together for optimal results to avoid unsatisfactory smears. We conclude that considering the overall advantages and cost-analysis, FNAB may be suggested as the initial method of choice for evaluation of bony lesions in most clinical settings, especially in resource challenged countries. The final choice should, however, be decided on the basis of the working clinical diagnosis and the institutional/personal experience.


 » Competing interests Top


The author(s) declare that they have no competing interests.


 » Authors' contributions Top


RM conceived the study, analysis and interpretation of data and helped to draft the manuscript.

PAS conceived the study, interpretation of data and helped to draft the manuscript.

MS participated in analysis and interpretation of data.

RM participated in the analysis of data and helped to write the manuscript

VO participated in the acquisition, analysis and interpretation of data.

PS participated in the acquisition, analysis and interpretation of data.

All authors read and approved the final manuscript.



 
 » References Top

1.Mehrotra R, Sharma K: Cytodiagnosis of tuberculosis of the skull by fine needle aspiration cytology: a case report. Pathology 2000, 32: 213-59.  Back to cited text no. 1    
2.Jorda M, Ray L, Hanlay A, Ganjei-Azar P: Fine-needle aspiration cytology of bone- Accuracy and pitfalls of cytodiagnosis. Cancer 2000, 90: 47-54.  Back to cited text no. 2    
3.Kreicbergs A, Bauer HC, Brosjo O, Lindholm J, Skoog L, Soderlund V: Cytological diagnosis of bone tumors. J Bone Joint Surg (Br) 1996, 78: 258-263.   Back to cited text no. 3    
4.Martin HE, Ellis EB: Biopsy by needle puncture and aspiration. Ann Surg 1930, 92: 169-81.   Back to cited text no. 4    
5.Agrawal PK, Goyal MM, Chandra T, Agrawal S: Predictive Value of FNAB of bone lesions. Acta Cytol 1997, 41: 659-65.  Back to cited text no. 5    
6.Layfield L: Fine needle aspiration of the musculoskeletal system. In Atlas of difficult diagnoses in cytopathology . 1st edition. Edited by: Atkinson BF, Silverman JF. Philadelphia: WB Saunders; 1998:481-7.   Back to cited text no. 6    
7.Goorin A: Chemotherapy for osteosarcoma and Ewing's sarcoma. In Surgery for bone and soft tissue tumors . 1st edition. Edited by: Simon MA, Springfield D. Philadelphia: Lippincott-Raven; 1998:239-44.   Back to cited text no. 7    
8.Treaba D, Assad L, Govil H, Sariya D, Reddy VB, Kluskens L, Green L, Selvaggi SM, Gattuso P: Diagnostic role of fine-needle aspiration of bone lesions in patients with a previous history of malignancy. Diagn Cytopathol 2002, 26: 380-3.  Back to cited text no. 8    
9.Yamamoto T, Nagira K, Marui T, Akisue T, Hitora T, Nakatani T, Yoshiya S, Kurosaka M, Ohbayashi C: Fine-needle aspiration biopsy in the initial diagnosis of bone lesions. Anticancer Res 2003, 23: 793-7.   Back to cited text no. 9    
10.Jones C, Liu K, Hirschowitz S, Klipfel N, Layfield LJ: Concordance of histopathologic and cytologic grading in musculoskeletal sarcomas: can grades obtained from analysis of the fine-needle aspirates serve as the basis for therapeutic decisions? Cancer 2002, 96: 83-91.  Back to cited text no. 10    
11.Soderlund V, Skoog L, Kreicbergs A: Combined radiology and cytology in the diagnosis of bone lesions. Acta Orthop Scand 2004, 4: 492-99.   Back to cited text no. 11    
12.Hajdu SI, Melamed MR: Diagnostic value of aspiration smears. Am J Clinical Pathology 1973, 5: 350-356.  Back to cited text no. 12    
13.Akerman M, Berg NO, Persson BM: Fine needle aspiration biopsy in the evaluation of tumor-like lesions of bone. Acta Orthop Scand 1976, 47: 129-36.   Back to cited text no. 13    
14.Xiaojing P, Xiangcheng Y: Cytodiagnosis of bone tumors by fine needle aspiration. Acta Cytol 1985, 29: 570-5.  Back to cited text no. 14    
15.Tikkakosi T: Combined CT guided biopsy and cytology in the diagnosis of bony lesions. Acta Radiol 1992, 33: 225-229.  Back to cited text no. 15    
16.Mondal A, Mishra D K: CT guided needle aspiration cytology of 112 vertebral lesions. Indian J Pathol Microbiol 1994, 37: 255-61.   Back to cited text no. 16    
17.Koscick RL, Petersilge CA, Makley JT, Abdul-Karim FW: CT guided FNAB and needle core biopsy of skeletal lesions - complimentary diagnostic techniques. Acta Cytol 1998, 42: 697-702.  Back to cited text no. 17    
18.Stormby N, Akerman M: Cytodiagnosis of bone lesions by means of fine-needle aspiration. Acta Cytol 1973, 17: 166-72.  Back to cited text no. 18    
19.Domanski A K, Åkerman M, Carlιn B, Engellau J, Gustafson P, Jonsson K, Mertens F, Rydholm : Core-needle biopsy performed by the cytopathologist. A technique to complement fine-needle aspiration of soft tissue and bone lesions. Cytopathology 2005, 16: 59-64.  Back to cited text no. 19    
20.Layfield LJ, Glasgow BJ, Anders KH, Mirra JM: Fine needle aspiration cytology of primary bone lesions. Acta Cytol 1987, 31: 177-84.   Back to cited text no. 20    
21.deSantos LA, Murray JA, Ayala AG: The value of percutaneous needle biopsy in the management of primary bone tumors. Cancer 1979, 43: 735-44.  Back to cited text no. 21    
22.El Khoury GY, Terepka RH, Mickelson MR, Rainville KL, Zaleski MS: Fine needle aspiration biopsy of bone. J Bone Joint Surg 1983, 65: 522-5.   Back to cited text no. 22    
23.Agarwal PK, Wahal KM: Cytopathologic study of primary tumors of bone and joints. Acta Cytol 1983, 27: 23-7.   Back to cited text no. 23    
24.James LP, Frable WJ: Fine needle aspiration of bone lesions. Acta Cytol 1983, 27: 559.   Back to cited text no. 24    
25.Dollahite HA, Tatum L, Moinuddin SM, Carnesale PG: Aspiration biopsy of primary neoplasms of bone. J Bone Joint Surg 1989, 71: 1166-9.  Back to cited text no. 25    
26.Ayala AG, Raymond AK, Ro JY, Carrasco CH, Fanning CV, Murray JA: Needle biopsy of primary bone tumors: M. D. Anderson experience. Pathol Annu 1989, 24: 219-51.  Back to cited text no. 26    
27.Kumar RV, Rao CR, Hazarika D, Mukherjee G, Gowda BMG: Aspiration biopsy cytology of primary bone lesions. Acta Cytol 1993, 37: 83-9.   Back to cited text no. 27    
28.Agarwal S, Agarwal T, Agarwal R, Agarwal PK, Jain UK: Fine-needle aspiration of bone tumours. Cancer Detect Prev 2000, 24: 602-9.  Back to cited text no. 28    
29.Wedin R, Bauer HC, Skoog L, Soderlund V, Tani E: Cytological diagnosis of skeletal lesions. Fine-needle aspiration biopsy in 110 tumours. J Bone Joint Surg Br 2000, 82: 673-8.   Back to cited text no. 29    
30.Handa U, Bal A, Mohan H, Bhardwaj S: Fine needle aspiration cytology in the diagnosis of bone lesions. Cytopathology 2005, 16: 100-11.  Back to cited text no. 30    
31.Layfield LJ, Armstrong D, Zaleski S, Eckardt J: Diagnostic accuracy and clinical utility of fine needle aspiration cytology in the diagnosis of clinically primary bone tumors. Diagn Cytopathol 1993, 9: 168-73.  Back to cited text no. 31    
32.Nnodu OE, Giwa S, Eyesan SU, Abdulkareem FB: Fine needle aspiration cytology of bone tumours - the experience from the National Orthopaedic and Lagos University Teaching Hospitals, Lagos, Nigeria. Cytojournal 2006, 3: 16.  Back to cited text no. 32    
33.Rinas AC, Ward WG, Kilpatrick SE: Potential sampling error in fine needle aspiration biopsy of dedifferentiated chondrosarcoma: a report of 4 cases. Acta Cytol 2005, 49: 554-9.   Back to cited text no. 33    
34.Berner JM, Forus A, Elkaholun A, Meltzer PS, Fostad O, Mykleblast O: Separate amplified regions encompassing CDK4 and MDM2 in human sarcomas. Genes chromosomes cancer 1996, 17: 254-259.   Back to cited text no. 34    
35.Swarts SJ, Neff J R, Johannson SL, Nelson M, Bridge J A: Significance of abnormalities of chromosomes 5 and 8 in chondroblastoma. Clin Orthop 1998, 25: 189-193.   Back to cited text no. 35    
36.Ruhs SA, EI-Khoury GY, Chrischilles EA: A cost minimization approach to the diagnosis of skeletal neoplasms. Skeletal Radiol 1996, 25: 449-54.   Back to cited text no. 36    
37.Bommer KK, Ramzy I, Mody D: Fine-needle aspiration biopsy in the diagnosis and management of bone lesions: a study of 450 cases. Cancer 1997, 81: 148-56.  Back to cited text no. 37    


    Figures

  [Figure1], [Figure 2], [Figure 3], [Figure 4], [Figure 5], [Figure 6], [Figure 7], [Figure 8], [Figure 9], [Figure 10], [Figure 11]
 
 
    Tables

  [Table 1], [Table 2], [Table 3], [Table 4], [Table 5]

This article has been cited by
1 Biopsy of Musculoskeletal Tumors; Current Concepts Review
Khodamorad Jamshidi,Abolfazl Bagherifard
Shafa Orthopedic Journal. 2015; 2(1)
[Pubmed] | [DOI]
2 Value of image-guided fine-needle aspiration cytology in the diagnosis of bone lesions
HebatAllah M. Shaaban,Ahmed M. Aly,Iman Abou-Sinna
Egyptian Journal of Pathology. 2013; 33(1): 18
[Pubmed] | [DOI]
3 Bone Cytology: A Realistic Approach for Clinical Use
Diana M. Cardona, Leslie G. Dodd
Surgical Pathology Clinics. 2011;
[VIEW] | [DOI]
4 Usefulness of the cytology in the diagnosis of bone lesions
Morvan, J., Charles-Petillon, F., Devauchelle-Pensec, V., Jousse-Joulin, S., Saraux, A.
Joint Bone Spine. 2010; 77(5): 432-434
[Pubmed]
5 Usefulness of cytological examination in the diagnosis of bone lesions | [Utilité de læexamen cytologique dans le diagnostic des lésions osseuses]
Morvan, J., Charles-Petillon, F., Devauchelle-Pensec, V., Jousse-Joulin, S., Saraux, A.
Revue du Rhumatisme (Edition Francaise). 2010; 77(5): 492-494
[Pubmed]
6 Utilité de l’examen cytologique dans le diagnostic des lésions osseuses
Johanne Morvan,Françoise Charles-Petillon,Valérie Devauchelle-Pensec,Sandrine Jousse-Joulin,Alain Saraux
Revue du Rhumatisme. 2010; 77(5): 492
[Pubmed] | [DOI]
7 Usefulness of the cytology in the diagnosis of bone lesions
Johanne Morvan,Françoise Charles-Petillon,Valérie Devauchelle-Pensec,Sandrine Jousse-Joulin,Alain Saraux
Joint Bone Spine. 2010; 77(5): 432
[Pubmed] | [DOI]
8 CytoJournalæs move to the new platform: More on financial model to the support open-access charter in cytopathology, publication quality indicators, and other issues
Shidham, VB and Pitman, MB and DeMay, RM and Atkinson, BF
CytoJournal. 2008; 5(1): 15
[Pubmed]



 

Top
Previous article Next article

    

  Site Map | Copyright and Disclaimer
© 2007 - CytoJournal | A journal by Cytopathology Foundation Inc with Wolters Kluwer - Medknow
New version online since 1st July '08
Open Access