Home | About CytoJournalEditorial Board | Archived articles | Search CytoJ Articles | Subscribe | Peer review policies | CytoJournal Quiz Cases
  Reviewer corner | Author corner | OA Steward’s corner | CF member’s corner | Join as CF member | Manuscript submission | Open Access (OA) Advocacy
Home
CytoJournal All 'FULL TEXT' in HTML are FREE under "open access" charter of CytoJournal.
To login for downloading any PDF OR to request TOC (Table of Content) by e-mail, please click here
Home Email this page Print this page Small font size Default font size Increase font size Cytopathology Foundation
Navigate here
  Search
 
  
Resource links
 »  Similar in PUBMED
 »  Search Pubmed for
 »  Search in Google Scholar for
 »  Article in PDF (1,033 KB)
 »  Citation Manager
 »  Access Statistics
 »  Reader Comments
 »  Email Alert *
 »  Add to My List *
* Registration required (free)  

 
  In this article
 » Question
 »  Answer and Follo...
 »  Additional Quiz ...
 »  Answers and Brie...
 »  Competing Intere...
 »  Authorship State...
 »  Ethics Statement...
 »  List of Abbrevia...
 »  References
 »  Article Figures

 Article Access Statistics
    Viewed573    
    Printed18    
    Emailed0    
    PDF Downloaded3    
    Comments [Add]    

Recommend this journal

 


 
Browse articles
CYTOJOURNAL QUIZ CASE
CytoJournal 2019,  16:11

CytoJounal quiz case: Fine-needle aspiration of peripancreatic mass clinically mimicking a lymphoma


1 Department of Pathology, Maimonides Medical Center, Brooklyn, USA
2 Memorial Sloan Kettering Cancer Center, New York, USA

Date of Submission19-Aug-2018
Date of Acceptance08-Oct-2018
Date of Web Publication24-May-2019

Correspondence Address:
Adela Cimic
Department of Pathology, Maimonides Medical Center, Brooklyn
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 0.4103/cytojournal.cytojournal_34_18

Rights and Permissions



How to cite this article:
Cimic A, Rekhtman N. CytoJounal quiz case: Fine-needle aspiration of peripancreatic mass clinically mimicking a lymphoma. CytoJournal 2019;16:11

How to cite this URL:
Cimic A, Rekhtman N. CytoJounal quiz case: Fine-needle aspiration of peripancreatic mass clinically mimicking a lymphoma. CytoJournal [serial online] 2019 [cited 2019 Aug 20];16:11. Available from: http://www.cytojournal.com/text.asp?2019/16/1/11/259078

Editorial/Peer Review Statement
To ensure the integrity and highest quality of CytoJournal publications, the review process of this manuscript was conducted under a double-blind model (authors are blinded for reviewers and vice versa) through automatic online system.


A 74-year-old male is found to have hypermetabolic upper abdominal lymphadenopathy clinically suspicious for lymphoma. After obtaining the consent, fine-needle aspiration (FNA) of the mass is performed, and ThinPrep slide and a cell block are prepared for evaluation. ThinPrep shows atypical cells with abundant pale cytoplasm, stippled chromatin, and mild anisonucleosis. The cell block shows clusters of cells with pale cytoplasm and somewhat granulomatous appearance [Figure 1]. An exhaustive immunohistochemical panel shows cells negative for AE1/3, TTF1, Hep Par, CD21, Cd1a, DOG1, inhibin, S100, and calretinin. The cells are positive for synaptophysin (image included) and chromogranin [Figure 2]. Rare cells are positive for SOX10.


 » Question Top


What is your interpretation?

  1. Metastatic neuroendocrine carcinoma
  2. Solid pseudopapillary carcinoma
  3. Adrenal cortical carcinoma
  4. Paraganglioma
  5. Melanoma.



 » Answer and Follow-Up of the Case Top


Based on the cytologic features, immunohistochemistry results, and location, the correct interpretation is C. paraganglioma.

The differential diagnosis based on the careful morphologic examination and location of the tumor includes hepatocellular carcinoma, pancreatic neuroendocrine tumor, adrenocortical carcinoma, melanoma, epithelioid gastrointestinal tumor, histiocytic lesions, and paraganglioma.

Paraganglioma is a rare tumor arising from the chromaffin cells in extra-adrenal sites. They can arise in all age groups with a peak incidence in the 4th and 5th decades. Cytologic diagnosis of extra-adrenal paraganglioma presenting as a peripancreatic mass is challenging with a high error rate due to its rarity.[1] Diagnosis on cytologic (FNA specimens) is usually challenging. To render the correct diagnosis, the pathologist should keep in mind the anatomic location and cytologic features reminiscent of an endocrine neoplasm. If the possibility of paraganglioma arises during on-site evaluation, it is necessary to collect cell block material and perform the immunostains to establish the diagnosis.[2] The diagnosis can be correctly established when the lesion is morphologically suspected on smears/Thinprep and cell block material. The tumor is positive for neuroendocrine markers, and usually, S100 protein is immunoreactive in sustentacular cells. However, in this case, S100 is noncontributory, but SOX10 is positive in rare sustentacular cells. In addition, succinate dehydrogenase (SDH) beta subunit is retained by immunohistochemistry in our case.


 » Additional Quiz Questions Top


Q2. How would you classify tumor of adrenal medulla arising from the chromaffin cells and how often are they malignant?

  1. Paraganglioma: 30% are malignant
  2. Pheochromocytoma: 90% are malignant
  3. Pheochromocytoma: 10% are malignant
  4. Cortical adrenal tumor: 40% are malignant.


Q3. In addition to immunohistochemical findings for diagnostic purposes, what other immunohistochemistry stain is recommended if available?

  1. Catecholamine
  2. Cytokeratin
  3. Melan A
  4. SDH beta subunit.


Q4. Paraganglioma syndrome is associated with following syndromes:

  1. von Hippel–Lindau (VHL)
  2. Carney triad
  3. Alport syndrome
  4. Pheochromocytoma/paraganglioma syndrome
  5. A, B, D
  6. All of the above.



 » Answers and Brief Review of the Topic Top


  • Q2: C Q3: D Q4: E


  • Neoplasms arising from the chromaffin cells in the adrenal medulla are classified as pheochromocytoma. Both paraganglioma and pheochromocytoma can produce and secrete catecholamines, thus presenting with hypertension.[3] About 90% of pheochromocytoma are benign and about 10% are bilateral. In typical paraganglioma/pheochromocytoma presentations (with hypertension), the first line of diagnosis is computed tomography (CT) scan. Functional imaging with 123I-MIBG or 18F-fludeoxyglucose positron emission tomography/CT is also acceptable if no lesion can be identified by morphological cross-sectional imaging or if metastatic disease is suspected.

    Octreoscan is excellent in the investigation of paraganglioma and neuroendocrine tumors in general.[4]

    In benign lesions, surgery is the first line of treatment.

    Paragangliomas can be sporadic or familial and associated with various syndromes such as VHL disease, Carney triad, neurofibromatosis type 1, MEN 2A and 2B, and hereditary pheochromocytoma/paraganglioma syndrome associated with SDH gene mutations. Familial forms of pheochromocytoma/paraganglioma syndrome can be frequently clinically recognized by the younger age of onset (<45), multiple and multifocal tumors, recurrent tumors, and family history of such tumors.

    It is currently thought, according to some studies, that 65%–80% of all pheochromocytomas/paragangliomas are associated with somatic or germline mutations and some can further be associated with one of the above syndromes.[5] The American Society of Clinical Oncology recommends offering genetic screening for all patients with a risk of at least 10% of carrying a genetic mutation, especially when the results aid in diagnosis or influence the management of the patient or family members at hereditary risk of cancer.[6] Some authors suggest that genetic screening should be performed in all patients with a paraganglioma.[5]

    Pheochromocytoma/paraganglioma syndrome is associated with a mutation in one SDH subunit that plays a critical role in mitochondria.

    Immunohistochemistry for SDHB has been shown to be an excellent screening tool for a mutation in SDH genes. Immunohistochemistry for SDHB is lost whenever there is a complete inactivation of SDHA, SDHB, SDHC, SDHD, or SDHAF2. As a result, loss of tumoral immunohistochemical staining for SDHB occurs when there is germline mutation of SDHA, SDHB, SDHC, or SDHD accompanied by inactivation of the normal allele. This makes loss of staining for SDHB a sensitive marker, suggestive of germline pathogenic variants of any of the SDH subunits.[7],[8] Germline pathogenic variants in SDHA show loss of staining for SDHA, in addition to loss of staining for SDHB.[9] In conclusion, negative/loss of staining for SDHB is an absolute indication for genetic testing and also indicates high risk of malignant behavior.

    Declaration of patient consent

    The authors certify that they have obtained all appropriate patient consent forms. In the form the patient(s) has/have given his/her/their consent for his/her/their images and other clinical information to be reported in the journal. The patients understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.


     » Competing Interests Statement by All Authors Top


    The authors declare that they have no competing interests.


     » Authorship Statement by All Authors Top


    Adela Cimic MD-primary author, data collection and drafting of the manuscript. Natasha Rekhtman, MD, senior author, data review and review of the manuscript.


     » Ethics Statement by All Authors Top


    This study was conducted with approval from the Institutional Review Board (or its equivalent) of all the institutions associated with this study as applicable. Authors take responsibility to maintain relevant documentation in this respect.


     » List of Abbreviations (In Alphabetic Order) Top


    CT - Computed tomography,

    FNA - Fine needle aspiration,

    SDH - Succinate dehydrogenase,

    VHL - Von Hippel-Lindau.



     
     » References Top

    1.
    Fite JJ, Maleki Z. Paraganglioma: Cytomorphologic features, radiologic and clinical findings in 12 cases. Diagn Cytopathol 2018;46:473-81.  Back to cited text no. 1
        
    2.
    Zaharopoulos P. Diagnostic challenges in the fine-needle aspiration diagnosis of carotid body paragangliomas: Report of two cases. Diagn Cytopathol 2000;23:202-7.  Back to cited text no. 2
        
    3.
    Marques RR, Bello CT, Rafael AA, Fernandes LV. Paraganglioma or pheochromocytoma? A peculiar diagnosis. J Surg Case Rep 2018;4:1-4.  Back to cited text no. 3
        
    4.
    Gimenez-Roqueplo AP, Caumont-Prim A, Houzard C, Hignette C, Hernigou A, Halimi P, et al. Imaging work-up for screening of paraganglioma and pheochromocytoma in SDHx mutation carriers: A multicenter prospective study from the PGL.EVA investigators. J Clin Endocrinol Metab 2013;98:162-73.  Back to cited text no. 4
        
    5.
    Currás-Freixes M, Inglada-Perez L, Mancikova V, Conde CM, Letón R, Mancikova V, et al. Recommendations for somatic and germline genetic testing of single pheochromocytoma and paraganglioma based on findings from a series of 329 patients. J Med Genet 2015;52:647-56.  Back to cited text no. 5
        
    6.
    Martins R, Bugalho MJ. Paragangliomas/pheochromocytomas: Clinically oriented genetic testing. Int J Endocrinol 2014;2014:794187.  Back to cited text no. 6
        
    7.
    Gill AJ, Benn DE, Chou A, Clarkson A, Muljono A, Meyer-Rochow GY, et al. Immunohistochemistry for SDHB triages genetic testing of SDHB, SDHC, and SDHD in paraganglioma-pheochromocytoma syndromes. Hum Pathol 2010;41:805-14.  Back to cited text no. 7
        
    8.
    Pai R, Manipadam MT, Singh P, Ebenazer A, Samuel P, Rajaratnam S. Usefulness of succinate dehydrogenase B (SDHB) immunohistochemistry in guiding mutational screening among patients with pheochromocytoma-paraganglioma syndromes. APMIS 2014;1122:1130-5.  Back to cited text no. 8
        
    9.
    Korpershoek E, Van Nederveen FH, Dannenberg H, Petri BJ, Komminoth P, Perren A, et al. Genetic analyses of apparently sporadic pheochromocytomas: The rotterdam experience. Ann N Y Acad Sci 2006;1073:138-48.  Back to cited text no. 9
        


        Figures

      [Figure 1], [Figure 2]



     

    Top
    Previous article Next article

        

      Site Map | Copyright and Disclaimer
    © 2007 - CytoJournal | A journal by Cytopathology Foundation Inc with Wolters Kluwer - Medknow
    New version online since 1st July '08
    Open Access